Student Name: \qquad Solution \qquad Student ID: \qquad

Given the operation times as follow:

Instruction memory access time $=190 \mathrm{ps}$, Register file read access time $=150 \mathrm{ps}$, ALU delay (basic instructions) $=190 \mathrm{ps}$,

Data memory access time $=190 \mathrm{ps}$
Register file write access $=150 \mathrm{ps}$
ALU delay (multiply/divide) $=550$

Assume the following instruction mix:
30% ALU, 15% multiply/divide, 15% load, 15% store, 15% branch, and 10% jump.
a) What is the total delay for each instruction class and the clock cycle for a single cycle MIPS implementation?
b) Assume we fix the clock cycle to 200 ps for a multi-cycle CPU, what is the average CPI? And speedup over a single cycle?
c) If we convert the multi-cycle into 5 stages pipelined CPU, what would be the execution time and speedup over the single cycle and the multi-cycle?
d) If the load instructions cause one stall to be inserted into the pipeline, and the multiply/divide instructions cause two stalls to be inserted, what would be the increase in the pipeline CPI over the ideal CPI? Re-calculate speedups of part (c)?

Solution:

Instruction Class	Instruction Memory	Register Read	ALU	Data Memory	Register Write	Total Delay (ps)
Basic ALU	190	150	190		150	680
Mul \& Div	190	150	550		150	1040
Load	190	150	190	190	150	$\mathbf{8 7 0}$
Store	190	150	190	190		$\mathbf{7 2 0}$
Branch	$\mathbf{1 9 0}$	$\mathbf{1 5 0}$	$\mathbf{1 9 0}$		$\mathbf{5 3 0}$	
Jump	$\mathbf{1 9 0}$	$\mathbf{1 5 0}$			$\mathbf{3 4 0}$	

\qquad Student ID: \qquad
a. Max delay is when performing mult/div, thus for single cycle design, the clock cycle time is equal to $\mathbf{1 0 4 0} \mathbf{~ p s}$, i.e. clock rate $=0.96 \mathrm{MHz}$
b. For multi-cycle design with a clock period of 200 ps , i.e. clock rate $=5 \mathrm{MHz}$:

Basic ALU $=4$ stages $\rightarrow 4$ cycles
Multiply \& Divide $=4$ stages but ALU requires three cycles $\rightarrow 6$ cycles
Load $=5$ cycles
Store $=4$ cycles
Branch $=3$ cycles
Jump = 2 cycles
Average CPI $=0.3 * 4+0.15 * 6+0.15 * 5+0.15 * 4+0.15 * 3+0.1 * 2=4.1$

Speedup of multi-cycle over single-cycle;
$\operatorname{Sup}(\mathrm{s} \rightarrow \mathrm{m})=(\text { multi clk rate/signle clk rate)})^{*}($ sigle CPI/multi CPI $)$
or
$\mathrm{S}(\mathrm{s} \rightarrow \mathrm{m})=(($ single cycle execution time $) * \mathrm{~s}-\mathrm{CPI}) /(($ multi clk cyle time $) * \mathrm{~m}-\mathrm{CPI})$

$$
=(1040 * 1) /(200 * 4.1)=\mathbf{1 . 2 7}
$$

In case you wanted to calculate average execution time; Average CPU execution time $=$ Cycle time*CPI*NumberOfInstructions $\mathrm{T}=\mathrm{C} \times \mathrm{CPI} \mathrm{x} \mathrm{I}$
For any instruction, its execution time $=200 \mathrm{ps} * 4.1=820 \mathrm{ps}$
c. Ideal pipeline $\mathrm{CPI}=1$ running at 200 ps ;

Execution time for any instruction $=200 \mathrm{ps} * 5=1000 \mathrm{ps}$
However Mult\&Div requires three ALU cycles which means the pipeline should really be a seven stages pipeline, thus its execution time is equal to 1400 ps . The following speed up calculations hold true whether the pipe is 5 or 7 stages. This is because the pipeline CPI is independent of the number of stages.

Speedup pipeline over single cycle;

$$
\mathrm{S}(\mathrm{~s} \rightarrow \mathrm{p})=(\mathrm{Ts} * \mathrm{sCPI}) /(\mathrm{Tp} * \mathrm{pCPI})=(1040 * 1)(200 * 1)=\mathbf{5 . 2}
$$

Speedup pipeline over multi cycle;
$\mathrm{S}(\mathrm{m} \rightarrow \mathrm{p})=(\mathrm{Tm} * \mathrm{mCPI}) /(\mathrm{Tp} * \mathrm{pCPI})=(200 * 4.1)(200 * 1)=4.1$
d. None ideal pipeline;
pCPI" $=1+$ pipeline cycles with stalls $=1+$ (load stalls + div\&multiply stalls $)$

$$
=1+(0.15 \times 1+0.15 \times 2)=\mathbf{1 . 4 5}
$$

Speedup pipeline over single cycle;
$\mathrm{S}(\mathrm{s} \rightarrow \mathrm{p})^{*}=(\mathrm{Ts} * \mathrm{~s}-\mathrm{CPI}) /(\mathrm{Tp} * \mathrm{p}-\mathrm{CPI} ")=(1040 * 1)(200 * 1.45)=\mathbf{3 . 5 8 6}$
Speedup pipeline over multi cycle;
$\mathrm{S}(\mathrm{m} \rightarrow \mathrm{p})=(\mathrm{Tm} * \mathrm{~m}-\mathrm{CPI}) /(\mathrm{Tp} * \mathrm{p}-\mathrm{CPI} ")=(200 * 4.1)(200 * 1.45)=\mathbf{2 . 8 3}$

